» »

АЭС: как это работает? Атомные электростанции Основное топливо для атомных электростанций

04.03.2024

Под ядерным топливом обычно понимается совокупность всех делящихся нуклидов в активной зоне. Большинство используемых в энергоблоках АЭС тепловых ЭЯР в начальной стадии эксплуатации работают на чисто урановом топливе, но в процессе кампании в них воспроизводится существенное количество вторичного ядерного топлива - плутония-239, который сразу после его образования включается в процесс размножения нейтронов в реакторе. Поэтому топливом в таких ЯР в любой момент кампании следует считать, как минимум, совокупность трёх делящихся компонентов: 235 U, 238 U и 239 Pu. Уран-235 и плутоний-239 делятся нейтронами любых энергий реакторного спектра, а 238 U, как уже отмечалось, только быстрыми надпороговыми Е > 1.1 МэВ ) нейтронами.

Основной характеристикой уранового ядерного топлива является его начальное обогащение (x) ,под которым понимается доля (или процентное содержание) ядер урана-235 среди всех ядер урана. А поскольку на более чем 99.99% уран состоит из двух изотопов - 235 U и 238 U, то величина обогащения:

В природном металлическом уране содержится приблизительно 0.714% ядер 235 U, а более 99.286% составляет 238 U (прочие изотопы урана: 233 U, 234 U, 236 U и 237 U - присутствуют в природном уране в настолько незначительных количествах, что могут не приниматься во внимание).

Если топливо не свежее (облученное – ОЯТ), то его характеризуют еще одним параметром – глубиной выгорания .

Ядерное топливо - штука дорогостоящая. Добыча урановой руды, получение природного металлического урана, обогащение его изотопом 235 U, изготовление топливной композиции, спечение её в таблетки и их чистовая обработка, изготовление твэлов и тепловыделяющих сборок - всё это очень сложные технологические процессы, требующие больших материальных и энергетических затрат. Понятно, что выбрасывать довольно большое количество невыгоревшего ядерного топлива на кладбище радиоактивных отходов было бы делом весьма неумным.

Отработанное (ОБЛУЧЕННОЕ) топливо направляется на регенерацию , где топливные компоненты по цепочке сложных технологических операций отделяются от накопившихся за время работы продуктов деления, заново обогащаются изотопом 235 U и вновь включаются в топливный цикл. Заметим, что регенерация ядерного топлива не менее сложна и дорога, чем изготовление “свежего” топлива.

Вот почему очень важно, чтобы в процессе кампании выгорала как можно большая часть загруженного топлива, а для регенерации оставалась бы как можно меньшая его часть. Мерой оценки эффективности использования топлива в энергетических реакторах служат две основные характеристики.

а) Степень выгорания топлива - это доля (или процент) выгоревшего основного топлива (235 U) от начального его количества.


Степень выгорания обозначается буквой z и в соответствии с определением равна:

Путём элементарных подстановок несложно показать, что степень выгорания в любой момент кампании t - величина, прямо пропорциональная величине энерговыработки W(t) , если не брать в расчёт ту часть выработанной энергии, которая получена в результате делений ядер плутония.

Из (15.3.1) следует, что

Об эффективности использования основного топлива в реакторе за время кампании активной зоны можно судить по цифрам максимальной степени выгорания (то есть степени выгорания в конце кампании).

Для реакторов типа РБМК-1000 z max = 0.35 ¸ 0.37 , а для реакторов водо-водяного типа (ВВЭР-440, ВВЭР-1000) z max = 0.30 ¸ 0.33 .

На практике степень выгорания может измеряться и в %.

б) Глубина выгорания - это энерговыработка на данный момент кампании, приходящаяся на единицу массы первоначально загруженного урана.

Здесь речь идёт обо всём уране (235 U + 238 U), загружаемом в активную зону перед началом кампании. Если обозначить величину глубины выгорания через b , то в соответствии с определением

Глубину выгорания принято измерять в МВт сутки / т, МВт сутки /кг

или ГВт сутки/ т.

Представление о величинах глубины выгорания топлива дают такие цифры:

* для реакторов типа РБМК-1000 b max => 20 МВт. сут /кг ;

* для реакторов типа ВВЭР-1000 b max => 40 ¸ 50 МВт. сут /кг .

В реакторах АЭС используется уран низкого обогащения (обогащённый до 1.8 ¸ 5.2%), в ре­акторах морских транспортных ядерных энергоустановок начальное обогащение ядерного топлива составляет 21 ¸ 45%, а в установках с жидкометаллическими реакторами используется ядерное топливо с обогащением до 90%. Использование топлива с низким обогащением на АЭС объясняется экономическими соображениями: технология производства обогащённого топлива сложна, энергоёмка, требует сложного и громоздкого оборудования, а потому и является дорогой технологией.

Металлический уран термически не стоек, подвержен фазовым превращениям при относительно невысоких температурах и химически нестабилен, а потому неприемлем в качестве топлива энергетических реакторов. Поэтому уран в реакторах используется не в чисто металлическом виде, а в форме химических (или металлургических) соединений с другими химическими элементами.Эти соединения называются топливными композициями.

Наиболее распространенные в реакторной технике топливные композиции:

UO 2 , U 3 O 8 , UC, UC 2 , UN, U 3 Si, (UAl 3)Si, UBe 13 . (Cu-UO 2)

Другой (другие) химический элемент топливной композиции называют разжижителем топлива. В первых двух из перечисленных топливных композиций разжижителем является кислород, во вторых двух - углерод, в последующих соответственно азот, кремний, алюминий с кремнием и бериллий.

Основные требования к разжижителю - те же, что и замедлителю в реакторе: он должен иметь высокое микросечение упругого рассеяния и воз­можно более низкое микросечение поглощения тепловых и резонансных нейтронов.

Наиболее распространенной топливной композицией в энергетических реакторах АЭС являетсядиоксид урана (UO 2) , и его разжижитель - кислород - в полной мере отвечает всем упомянутым требованиям.

Температура плавления диоксида (2800 o С) и его высокая термическая устойчивость позволяют иметь высокотемпературное топливо с допустимой рабочей температурой до 2200 о С.

В силу того, что ядерное топливо эффективнее всех остальных видов топлива, которым мы располагаем сегодня, огромное предпочтение отдается всему тому, что способно работать с помощью атомных установок (АЭС, подводные лодки, корабли и прочее). О том, как производят ядерное топливо для реакторов, мы поговорим далее.

Добывают уран двумя основными способами:
1) Прямая добыча в карьерах или шахтах, если позволяет глубина залегания урана. С этим методом, надеюсь, всё понятно.
2) Подземное выщелачивание. Это когда на том месте, где найден уран, бурятся скважины, в них закачивается слабый раствор серной кислоты, а уже раствор взаимодействует с ураном, соединяясь с ним. Затем получившаяся смесь откачивается наверх, на поверхность, и из неё химическими методами выделяется уран.

Представим, будто мы уже добыли на руднике уран и подготовили его для дальнейших преобразований. На фото ниже - так называемый "желтый кек", U3O8. В бочке для дальнейшей перевозки.

Всё бы хорошо, и этот уран в теории можно было бы сразу использовать для производства топлива для АЭС, но увы. Природа, как всегда, подкинула нам работы. Дело в том что природный уран состоит из смеси трех изотопов. Это U238 (99.2745%), U235 (0.72%) и U234(0.0055%). Нас интересует здесь лишь U235 - так как он отлично делится тепловыми нейтронами в реакторе, именно он позволяет нам пользоваться всеми благами цепной реакции деления. К сожалению, его природной концентрации не хватит для стабильной и долгой работы современного реактора АЭС. Хотя, насколько я знаю, аппарат РБМК спроектирован так, что запуститься на топливе из природного урана сможет, но вот стабильность, долговременность и безопасность работы на таком топливе совершенно не гарантируется.
Уран нам надо обогатить. То есть повысить концентрацию U235 от природной до той, которая используется в реакторе.
Для примера, реактор РБМК работает на уране обогащения 2.8%, ВВЭР-1000 - обогащение от 1.6 до 5.0%. Судовые и корабельные ядерные энергетические установки кушают топливо с обогащением до 20%. А некоторые исследовательские реакторы работают на топливе аж с 90% обогащением (пример - ИРТ-Т в Томске).
В России обогащение урана проводится на газовых центрифугах. Т. е. тот желтый порошок, что был на фото ранее, превращают в газ, гексафторид урана UF6. Затем этот газ поступает на целый каскад центрифуг. На выходе из каждой центрифуги, из-за разности веса ядер U235 и U238, мы получаем гексафторид урана с чуть повышенным содержанием U235. Процесс повторяется многократно и в итоге мы получаем гексафторид урана с нужным нам обогащением. На фото ниже как раз можно увидеть масштаб каскада центрифуг - их очень много и простираются они в далекие дали.



Затем газ UF6 превращают обратно в UO2, в виде порошка. Химия, всё-таки, очень полезная наука и позволяет нам творить такие чудеса.
Однако этот порошок в реактор так просто не засыпать. Вернее, засыпать-то можно, но ничего хорошего из этого не выйдет. Его (порошок) надо привести к такому виду, чтобы мы могли надолго, на годы, опустить его в реактор. При этом само горючее не должно контактировать с теплоносителем и выходить за пределы активной зоны. И еще ко всему этому топливо должно выдерживать очень и очень суровые давления и температуры, которые возникнут в нём при работе внутри реактора.
Забыл, кстати, сказать что порошок тоже не абы какой - он должен быть определенных размеров, чтобы при спрессовывании и спекании не образовывалось ненужных пустот и трещин. Сначала из порошка делают таблетки, путем спрессовывания и долгого выпекания (технология действительно непростая, если её нарушить - топливные таблетки не будут годны к использованию). Вариации таблеток покажу на фото ниже.

Отверстия и выемки на таблетках нужны для компенсации теплового расширения и радиационных формоизменений. В реакторе со временем таблетки пухнут, выгибаются, изменяют размеры, и если ничего не предусмотреть - могут разрушиться, а это плохо.

Готовые таблетки затем упаковывают в металлические трубки (из стали, циркония и его сплавов и других металлов). Трубки закрывают с обоих концов и герметизируют. Готовая трубка с топливом называется твэл - тепловыделяющий элемент.

Для разных реакторов требуются твэлы разной конструкции и обогащения. Твэл РБМК, например, длиной 3.5 метра. Твэлы, кстати, бывают не только стержневые. как на фото. Они бывают пластинчатые, кольцевые, море различных видов и модификаций.
Твэлы затем объединяют в тепловыделяющие сборки - ТВС. ТВС реактора РБМК состоит из 18 твэлов и выглядит примерно вот так:

ТВС реактора ВВЭР выглядит вот так:
Как видно, ТВС реактора ВВЭР состоит из гораздо большего количества твэлов, чем у РБМК.
Готовое специзделие (ТВС) затем с соблюдением мер предосторожности доставляется на АЭС. Зачем предосторожности? Ядерное горючее, хоть пока и нерадиоактивно, очень ценное, дорогое, и при очень неаккуратном обращении способно вызвать много проблем. Затем проводится финальный контроль состояния ТВС и - загрузка в реактор. Всё, уран прошел долгий путь от руды под землей к высокотехнологичному устройству внутри ядерного реактора. Теперь у него другая судьба - несколько лет тужиться внутри реактора и выделять драгоценное тепло, которое у него будет забирать вода (или любой другой теплоноситель).

Новосибирский завод химконцентратов в 2011 году произвел и реализовал 70% мирового потребления изотопа лития-7 (1300 кг), поставив новый рекорд в истории завода. Однако основным продуктом производства НЗХК является ядерное топливо.

Это словосочетание действует на сознание новосибирцев впечатляюще и пугающе, заставляя воображать о предприятии все, что угодно: начиная от трехногих рабочих и отдельного подземного города и заканчивая радиоактивным ветром.

Так что же на самом деле скрывается за заборами самого таинственного завода Новосибирска, производящего ядерное топливо в черте города?

ОАО «Новосибирский завод химконцентратов» - один из ведущих мировых производителей ядерного топлива для АЭС и исследовательских реакторов России и зарубежных стран. Единственный российский производитель металлического лития и его солей. Входит в состав Топливной компании «ТВЭЛ» Госкорпорации «Росатом».

Мы пришли в цех, где изготавливают тепловыделяющие сборки - ТВС, которые загружаются в ядерные энергетические реакторы. Это и есть ядерное топливо для АЭС. Для входа на производство нужно надеть халат, шапочку, бахилы из ткани, на лицо - «Лепесток».

В цехе сосредоточены все работы, связанные с урансодержащими материалами. Этот технологический комплекс является одним из основных для НЗХК (ТВС для АЭС занимают приблизительно 50 % в структуре реализованной продукции ОАО «НЗХК»).

Операторская, откуда идет управление процессом производства порошка диоксида урана, из которого затем изготавливают топливные таблетки.

Рабочие проводят регламентные работы: через определенные промежутки времени даже самое новое оборудование останавливают и проверяют. В самом цехе всегда достаточно много воздуха - постоянно работает вытяжная вентиляция.

В таких биконусах хранится порошок диоксида урана. В них происходит перемешивание порошка и пластификатора, который позволяет таблетке лучше спрессоваться.

Установка, которая производит прессование топливных таблеток. Как из песка дети делают куличики, надавливая на формочку, так и здесь: урановая таблетка прессуется под давлением.

Молибденовая лодочка с таблетками, которые ждут отправления в печь на отжиг. До отжига у таблеток зеленоватый оттенок и другой размер.

Контакт порошка, таблетки и окружающей среды сведен к минимуму: все работы ведутся в боксах. Для того чтобы что-то поправлять внутри, в боксы встроены специальные перчатки.

Факелы сверху - это догорающий водород. Таблетки отжигаются в печах при температуре не менее 1750 градусов в водородной восстановительной среде в течение 20 с лишним часов.

Черные шкафы - это водородные высокотемпературные печи, в которых молибденовая лодочка проходит различные температурные зоны. Открывается заслонка, и в печь, откуда вырываются языки пламени, заходит молибденовая лодочка.

Готовые таблетки шлифуются, поскольку они должны быть строго определенного размера. И на выходе контролеры проверяют каждую таблетку, чтобы не было ни сколов, ни трещин, никаких дефектов.

Одна таблетка весом 4,5 г по энерговыделению эквивалентна 640 кг дров, 400 кг каменного угля, 360 куб. м газа, 350 кг нефти.

Таблетки диоксида урана после отжига в водородной печи.

Здесь циркониевые трубки заполняют таблетками диоксида урана. На выходе имеем готовые твэлы (около 4 м в длину) - тепловыделяющие элементы. Из твэлов уже собирают ТВС, иначе говоря, ядерное топливо.

Таких автоматов с газировкой на улицах города уже не встретить, пожалуй, только на НЗХК. Хотя в советские времена они были очень распространены.

В этом автомате стакан можно помыть, а затем наполнить газированной, негазированной или охлажденной водой.

По оценке департамента природных ресурсов и охраны окружающей среды, высказанной в 2010 году, НЗХК не оказывает значимого влияния на загрязнение окружающей среды.

Пара таких породистых куриц постоянно проживает и откладывает яйца в добротном деревянном вольере, который находится на территории цеха.

Рабочие сваривают каркас для тепловыделяющей сборки. Каркасы бывают разные, в зависимости от модификации ТВС.

На заводе работают 2277 человек, средний возраст персонала - 44,3 года, 58 % - мужчины. Средняя заработная плата превышает 38 000 руб.

Большие трубки - это каналы для системы управления защиты реактора. В этот каркас затем установят 312 твэлов.

По соседству с НЗХК расположилась ТЭЦ-4. Со ссылкой на экологов представители завода сообщили: в год одна ТЭЦ выбрасывает радиоактивных веществ в 7,5 раз больше, чем НЗХК.

Слесарь-сборщик Виктор Пустозеров, ветеран завода и атомной энергетики, имеет 2 ордена Трудовой Славы

Головка и хвостовик для ТВС. Их устанавливают в самом конце, когда в каркасе уже стоят все 312 твэлов.

Финальный контроль: готовые ТВС проверяют специальными щупами, чтобы расстояние между твэлами было одинаковое. Контролеры чаще всего женщины, это очень кропотливая работа.

В таких контейнерах ТВС отправляются потребителю - по 2 кассеты в каждом. Внутри у них свое уютное войлочное ложе.

Топливо для атомных станций, произведенное в ОАО «НЗХК», используется на российских АЭС, а также поставляется в Украину, в Болгарию, Китай, Индию и Иран. Стоимость ТВС является коммерческой тайной.

Работа на НЗХК ничуть не опаснее работы на любом промышленном предприятии. За состоянием здоровья работников ведется постоянный контроль. За последние годы не выявлено ни одного случая профзаболеваний среди работников.

Активная зона энергетического ядерного реактора (а.з.ЭЯР) - это часть его объёма, в которой конструктивно организованы условия для осуществления непрерывной самоподдерживающейся цепной реакции деления ядерного топлива и сбалансированного отвода генерируемого в нём тепла с целью его последующего использования.

Вдумавшись в смысл этого определения применительно к активной зо-не теплового ЭЯР, можно понять, что принципиальными компонентами такой активной зоны являются ядерное топливо, замедлитель, теплоноситель и другие конструкционные материалы Последние объективно необходимы, так как ядерное топливо и замедлитель в активной зоне и сама активная зона должны быть неподвижно зафиксированы в реакторе, представляя собой по возможности разборный технологический агрегат.

Под ядерным топливом обычно понимается совокупность всех делящихся нуклидов в активной зоне. Большинство ис-пользуемых в энергоблоках АЭС тепловых ЭЯР в начальной стадии эксплуа-тации работают на чисто урановом топливе, но в процессе кампании в них воспроизводится существенное количество вторичного ядерного топлива - плутония-239, который сразу после его образования включается в процесс размножения нейтронов в реакторе. Поэтому топливом в таких ЭЯР в любой произвольный момент кампании надо считать совокупность трёх делящихся компонентов: 235 U, 238 U и 239 Pu. Уран-235 и плутоний-239 делятся нейтронами любых энергий реакторного спектра, а 238 U, как уже отмечалось, только быстрыми надпороговыми (с Е > 1.1 МэВ) нейтронами.

Основной характеристикой уранового ядерного топлива является его начальное обогащение (x), под которым понимается доля (или процентное содержание) ядер урана-235 среди всех ядер урана. А поскольку на более чем 99.99% уран состоит из двух изотопов - 235 U и 238 U, то величина обогащения:
x = N 5 /N U = N 5 /(N 5 +N 8) (4.1.1)
В природном металлическом уране содержится приблизительно 0.71% ядер 235 U, а более 99.28% составляет 238 U. Прочие изотопы урана (233 U, 234 U, 236 U и 237 U) присутствуют в природном уране в настолько незначи-тельных количествах, что могут не приниматься во внимание.

В реакторах АЭС используется уран, обогащенный до 1.8 ÷ 5.2%, в ре-акторах морских транспортных ядерных энергоустановок начальное обога-щение ядерного топлива составляет 20 ÷ 45%. Использование топлива низких обогащений на АЭС объясняется экономическими соображениями: технология производства обогащённого топлива сложна, энергоёмка, требует сложного и громоздкого оборудования, а потому является дорогой технологией.

Металлический уран термически не стоек, подвержен аллотропным превращениям при относительно невысоких температурах и химически нестабилен, а потому неприемлем в качестве топлива энергетических реакторов. Поэтому уран в реакторах используется не в чисто металлическом виде, а в форме химических (или металлургических) соединений с другими химическими элементами. Эти соединения называются топливными композициями.

Наиболее распространенные в реакторной технике топливные компози-ции:
UO 2 , U 3 O 8 , UC, UC 2 , UN, U 3 Si, (UAl 3)Si, UBe 13 .

Другой (другие) химический элемент топливной композиции называют разжижителем топлива. В первых двух из перечисленных топливных компо-зиций разжижителем является кислород, во вторых двух - углерод, в по-следующих соответственно азот, кремний, алюминий с кремнием и бериллий.
Основные требования к разжижителю - те же, что и замедлителю в ре-акторе: он должен иметь высокое микросечение упругого рассеяния и воз-можно более низкое микросечение поглощения тепловых и резонансных ней-тронов.

Наиболее распространенной топливной композицией в энергетических реакторах АЭС является диоксид урана (UO 2) , и его разжижитель - кисло-род - в полной мере отвечает всем упомянутым требованиям.

Температура плавления диоксида (2800 o С) и его высокая термическая устойчивость позволяют иметь высокотемпературное топливо с допустимой рабочей температурой до 2200 о С.

Новосибирский завод химконцентратов - один из ведущих мировых производителей ядерного топлива для АЭС и исследовательских реакторов России и зарубежных стран. Единственный российский производитель металлического лития и его солей. Входит в состав Топливной компании "ТВЭЛ" Госкорпорации "Росатом".

Внимание, комментарии под фото!

Несмотря на то, что в 2011 году НЗХК произвел и реализовал 70 % мирового потребления изотопа лития-7, основным видом деятельности завода является выпуск ядерного топлива для энергетических и исследовательских реакторов.
Этому виду и посвящен текущий фоторепортаж.

Крыша здания основного производственного комплекса

Цех производства твэл и ТВС для исследовательских реакторов

Участок изготовления порошка диоксида урана методом высокотемпературного пирогидролиза

Загрузка контейнеров с гексафторидом урана

Комната операторов
Отсюда идет управление процессом производства порошка диоксида урана, из которого затем изготавливают топливные таблетки.

Участок изготовления урановых таблеток
На переднем плане видны биконусы, где хранится порошок диоксида урана.
В них происходит перемешивание порошка и пластификатора, который позволяет таблетке лучше спрессоваться.

Таблетки ядерного керамического топлива
Далее они отправления в печь на отжиг.

Факел (дожигания водорода) на печи спекания таблеток
Таблетки отжигаются в печах при температуре не менее 1750 градусов в водородной восстановительной среде в течение 20 с лишним часов.

Производственно-технический контроль таблеток ядерного керамического топлива
Одна таблетка весом 4,5 г по энерговыделению эквивалентна 400 кг каменного угля, 360 куб. м газа или 350 кг нефти.

Все работы ведутся в боксах через специальные перчатки.

Разгрузка тарных мест с таблетками

Цех производства твэл и ТВС для АЭС

Автоматизированная линия изготовления твэл

Здесь происходит заполнение циркониевых трубок таблетками диоксида урана.
В итоге получаются готовые твэлы около 4 м в длину — тепловыделяющие элементы.
Из твэлов уже собирают ТВС, иначе говоря, ядерное топливо.

Перемещение готовых твэл в транспортных контейнерах
Бахилы даже на колесах.

Участок сборки ТВС
Установка нанесения лакового покрытия на твэлы

Закрепление твэлов в механизме загрузки

Изготовление каркаса - сварка каналов и дистанционирующих решёток
В этот каркас затем установят 312 твэлов.

Технический контроль каркаса

Каналы и дистанционирующие решётки

Автоматизированные стенды снаряжения пучка твэлов

Сборка пучка

Технический контроль ТВС

Твэлы с штрих-кодовой маркировкой по которой можно проследить, буквально, весь путь производства изделия.

Стенды контроля и упаковки готовых ТВС

Контроль готовых ТВС
Проверяют, чтобы расстояние между твэлами было одинаковое.

Готовая ТВС

Двухтрубные контейнеры для транспортировки ТВС
Топливо для атомных станций, произведенное в НЗХК, используется на российских АЭС, а также поставляется в Украину, в Болгарию, Китай, Индию и Иран.

Взят у gelio в НЗХК. Производство ядерного топлива для АЭС (2012)

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите пишите мне - Аслан ([email protected] ) Лера Волкова ([email protected] ) и Саша Кукса ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта http://bigpicture.ru/ и http://ikaketosdelano.ru

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс , где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!