» »

С какой скоростью летит вертолет гражданский. Бой на пределе: каким будет российский скоростной вертолет. П очему вертолеты летают так низко

15.02.2024

McDonnell Douglas AH-64 Apache – 293 км/ч

Открывает рейтинг самых быстрых вертолётов в мире McDonnell Douglas AH-64 Apache - двухместный американский ударный вертолёт, разработанный компанией Hughes Helicopters в начале 1970-х годов. С середины 1980-х является основным боевым вертолётом Армии США, а также самым распространённым ударным вертолётом в мире. По состоянию на июнь 2013 г. было произведено около 2 000 машин. Крейсерская скорость вертолёта - 265 км/ч.

Ми-26 – 295 км/ч


Ми-26, по классификации НАТО: Halo («Ореол»), неофициальное название - «Корова» - советский тяжёлый многоцелевой транспортный вертолёт, производимый на заводе «Роствертол» в России. Является самым большим серийно выпускаемым вертолётом в мире. Используется для решения задач как военного, так и гражданского характера, а также для проведения поисково-спасательных операций. По состоянию на 2011 год всего изготовлено - 316 машин, из которых 40 были экспортированы за рубеж (Канада -12, Индия - 10, Северная Корея - 2, Малайзия - 2 Перу - 2, Южная Корея - 1 и др).

Ми-28 – 300 км/ч


Ми-28 - русский ударный вертолёт, предназначенный для уничтожения бронетанковой техники на поле боя. Кроме того, вертолёт может быть использован для огневой поддержки сухопутных войск, поддержки десанта, уничтожения воздушных целей и как транспортный вертолёт. По классификации НАТО машина получила обозначение Havoc - «Опустошитель». Всего произведено более 100 единиц. Крейсерская скорость Ми-28 - 270 км/ч.

Ka-52 – 300 км/ч


Ka-52 «Аллигатор», по классификации НАТО: Hokum B - двухместный российский боевой вертолёт способный поражать бронированную и небронированную технику, живую силу и воздушные цели противника. Испытательный полет первого опытного Ка-52 состоялось на аэродроме авиазавода «Прогресс» 27 июня 2008 г, а 29 октября этого же года началось мелкосерийное его производство. Всего было построено 79 летательных аппаратов Ka-52.

NHI NH90 – 300 км/ч


NHI NH90 - двухмоторный многоцелевой военный вертолёт, разработанный франко-германской компанией Eurocopter в двух вариантах - корабельный транспортно-боевой и транспортно-десантный. Впервые поднялся в воздух в декабре 1995 года. В 2006 был введён в эксплуатацию. По состоянию на июль 2015 всего было произведено 244 единицы.

AgustaWestland AW101 – 309 км/ч


Пятое место в рейтинге самых быстрых вертолётов занимает AgustaWestland AW101 или в Великобритании, Дании и Португалии известен как Merlin - многоцелевой вертолёт средней грузоподъёмности, разработанный компанией AgustaWestland. Используется как в военных, так и в гражданских целях. Первый свой полет совершил 9 октября 1987 года.

AgustaWestland AW139 – 310 км/ч


AgustaWestland AW139 - средний двухмоторный вертолёт от компании Agusta Westland, предназначенный для выполнения спасательно-поисковых задач. Первый свой полет совершил 3 февраля 2001 года. Поступил на вооружение в начале 2012. На сегодня количество заказанных вертолётов AgustaWestland AW139 и их модификаций - 650 единиц. Они используются для решения различных задач, например, для осуществления правительственных визитов, миссий SAR/EMS, морских поставок, правоохранительными органами, а также задействованы в гражданском секторе. Крейсерская скорость вертолёта - 306 км/ч.

МИ-35М – 310 км/ч


На третьем месте в списке десяти самых быстрых вертолётов в мире находится МИ-35М - глубокая модернизация советской/российской ударной винтокрылой машины Ми-24, который входит в десятку самых больших вертолётов в мире . МИ-35М серийно производится с 2005 года на заводе «Роствертол» в Ростове-на-Дону, Россия.

Boeing CH-47 Chinook – 315 км/ч


Boeing CH-47 Chinook - американский тяжёлый двухмоторный военно-транспортный вертолёт, серийно производимый с 1962 г. Является одним из крупнейших вертолётов мира. Экспортировался в 16 стран мира. По состоянию на 2012 год построено более 1 200 экземпляров.

Eurocopter X3 – 472 км/ч


Самым быстрым вертолётом в мире является Eurocopter X3 - экспериментальный высокоскоростной гибридный вертолёт, разработанный компанией Airbus Helicopters. Впервые поднялся в воздух 6 сентября 2010 года во Франции. 7 июня 2013 г. Eurocopter X3 разогнался до 255 узлов (472 км/ч) тем самым установив неофициальный рекорд скорости среди вертолётов. Масса летательного аппарата - 5 200 кг.

ОБЩАЯ ХАРАКТЕРИСТИКА ВЕРТОЛЕТА Ми-8Т

1. ОБЩИЕ СВЕДЕНИЯ О ВЕРТОЛЕТЕ

Вертолет Ми-8 предназначен для перевозки различных грузов внутри грузовой кабины и на внешней подвеске, почты, пассажиров, а также для проведения строительно-монтажных и других работ в труднодоступной мест­ности.

Рис. 1.1. Вертолет Ми-8 (общий вид)

Вертолет (рис. 1.1) спроектирован по одновинтовой схеме с пятилопастным несущим и трехлопастным рулевым винтами. На вертолете установле­ны два турбовинтовых двигателя ТВ2-117А со взлетной мощностью 1500 л.с. каждый, что обеспечивает высокую безопасность полетов, так как полет воз­можен и при отказе одного из двигателей.

Вертолет эксплуатируется в двух основных вариантах: пассажирском Ми-8П и транспортном Ми-8Т. Пассажирский вариант вертолета предназна­чен для межобластных и местных перевозок пассажиров, багажа, почты и малогабаритных грузов. Он рассчитан на перевозку 28 пассажиров. Тран­спортный вариант предусматривает перевозку грузов массой до 4000 кг или пассажиров в количестве 24 человек. По желанию заказчика пас­сажирский салон вертолета может быть переоборудован в салон с по­вышенным комфортом на 11 пассажиров.

Пассажирский и транспортный варианты вертолета могут быть переобо­рудованы в санитарный вариант и в вариант для работы с внешней подвеской.

Вертолет в санитарном варианте позволяет перевозить 12 лежачих боль­ных и сопровождающего медработника. В варианте для работы с внешней подвеской осуществляется перевозка крупногабаритных грузов массой до 3000 кг вне фюзеляжа.

Для перелетов вертолета на большие дальности предусмотрена установка в грузовой кабине одного или двух дополнительных топливных баков.

Существующие варианты вертолета снабжены электролебедкой, позво­ляющей с помощью бортовой стрелы производить подъем (спуск) на борт вер­толета грузов массой до 150 кг, а также при наличии полиспаста затягивать в грузовую кабину колесные грузы массой до 3000 кг.

Экипаж вертолета состоит из двух пилотов и бортмеханика.

При создании вертолета особое внимание было уделено высокой надежно­сти, экономичности, простоты в обслуживании и эксплуатации.

Безопасность полетов на вертолете Ми-8 обеспечивается:

Установкой на вертолете двух двигателей ТВ2-117А(АГ), надежностью работы этих двигателей и главного редуктора ВР-8А;

Возможностью совершать полет в случае отказа одного из двигателей, а также перейти на режим авторотации (самовращения несущего винта) при отказе обоих двигателей;

Наличием отсеков, изолирующих двигатели и главный редуктор с по­мощью противопожарных перегородок;

Установкой надежной противопожарной системы, обеспечивающей туше­ние пожара в случае его возникновения как одновременно во всех отсеках, так и в каждом отсеке в отдельности;

Установкой дублирующих агрегатов в основных системах я оборудовании вертолета;

Надежными и эффективными противообледенительными устройствами ло­пастей несущего и рулевого винтов, воздухозаборников двигателей и лобо­вых стекол кабины экипажа, что позволяет совершать полет в условиях об­леденения;

Установкой аппаратуры, обеспечивающей простое и надежное пилотиро­вание и посадку вертолета в различных метеорологических условиях;

Приводом основных агрегатов систем от главного редуктора, обеспечива­ющим работоспособность систем при отказе двигателя:

Возможностью быстрого покидания вертолета после его посадки пасса­жирами и экипажем в аварийных случаях.

2. ОСНОВНЫЕ ДАННЫЕ ВЕРТОЛЕТА

Летные данные

(транспортный и пассажирский варианты)

Взлетная масса (нормальная), кг.............. 11100

Максимальная скорость полета (по прибору), км/ч, 250

Статический потолок, м............................ 700

Крейсерская скорость полета по прибору на высоте
500 м, км/ч ………………………………………………220

Экономическая скорость полета (по прибору), км/ч. 120


топливом 1450 кг, км................................ 365


варианте с заправкой топливом 2160 кг, км. . .620

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 2870 кг, км... 850

Дальность полета (на высоте 500 м) с заправкой
топливом 2025 кг (подвесные баки увеличенной
вместимости), км................................................ 575

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 2735 кг (подвес­ные баки

увеличенной вместимости), км.... 805

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 3445 кг (подвесные баки

увеличенной вместимости), км.... 1035

Примечание. Дальность полета рассчитана с учетом 30-минутного остатка топлива после посадки

Геометрические данные

Длина вертолета, м:

без несущего и рулевого винтов.................. 18,3

с вращающимися несущим и рулевым винтами …25,244

Высота вертолета, м:

без рулевого винта........................................ 4,73

с вращающимся рулевым винтом................ 5,654

Расстояние от конца лопасти несущего винта до ­
хвостовой балки на стоянке, м..................... 0,45

Расстояние от земли до нижней точки фюзеляжа

(клиренс), м................................................... 0,445

Площадь горизонтального оперения, м 2 ….. 2

Стояночный угол вертолета................. 3°42"

Фюзеляж

Длина грузовой кабины, м:

без грузовых створок............................ 5,34

с грузовыми створками на уровне 1 м от пола 7,82

Ширина грузовой кабины, м:

на полу................................................... 2,06

по коробам отопления........................... 2,14

максимальная......................................... 2,25

Высота грузовой кабины, м.................. 1,8

Расстояние между силовыми балками пола, м … 1,52

Размер аварийного люка, м…………………… 0,7 X1

Колея погрузочных трапов, м.............. 1,5±0,2

Длина пассажирской кабины, м............ 6,36

Ширина пассажирской кабины (по полу), м... 2,05

Высота пассажирской кабины, м 1,8

Шаг кресел, м.................................................. 0,74

Ширина прохода между креслами, м... 0,3

Размеры гардероба (ширина, высота, глубина), м 0,9 X1,8 X 0,7
» сдвижной двери (ширина, высота), м. . 0,8 X1.4
» проема, по заднюю входную дверь в пассажирском

варианте (ширина, высота), м.......... 0,8 X1>3

Размер аварийных люков в пассажирском

варианте, м............................................. 0,46 X0,7

Размер кабины экипажа, м.................... 2,15 X2,05 X1,7

Регулировочные данные

Угол установки лопастей несущего винта (по указа­телю шага винта):

минимальный................................................. 1°

максимальный........................................ 14°±30"

Угол отгиба триммерных пластин лопастей винта -2 ±3°

» установки лопастей рулевого винта (на r=0,7) *:

минимальный (левая педаль до упора) ................... 7"30"±30"

максимальный (правая педаль до упора)………….. +21°±25"

* r- относительный радиус

Весовые и центровочные данные

Взлетная масса, кг:

максимальная для транспортного варианта …….. 11100

» с грузом на внешней подвеске …………… 11100

транспортный вариант.......................... 4000

на внешней подвеске.............................. 3000

пассажирский вариант (человек).......... 28

Масса пустого вертолета, кг:

пассажирский вариант........................... 7370

транспортный »................................ 6835

Масса служебной нагрузки, в том числе:

масса экипажа, кг................................... 270

» масла, кг........................................................... 70

масса продуктов, кг.............................................. 10

» топлива, кг......................................................... 1450 - 3445

» коммерческой нагрузки, кг............................... 0 - 4000

Центровка пустого вертолета, мм:

транспортный вариант........................................... +133

пассажирский » ....................................... +20

Допустимые центровки для загруженного вертолета, мм:

передняя.................................................................. +370

задняя...................................................................... -95

3. АЭРОДИНАМИЧЕСКИЕ И ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЕРТОЛЕТА

По аэродинамической схеме вертолет Ми-8 представляет собой фюзеляж с пятилопастным несущим, трехлопастным рулевым винтами и неубирающимися шасси.

Лопасти несущего винта прямоугольной формы в плане с хордой, равной 0,52 м. Прямоугольная форма в плане в аэродинамическом отношении счи­тается хуже других, но она проста в производстве. Наличие триммерных пластин на лопастях позволяет изменять их моментные характери­стики.

Профиль лопасти является важнейшей геометрической характеристикой несущего винта. На вертолете подобраны различные профили по длине ло­пасти, что заметно улучшает не только аэродинамические характеристики несущего винта, но и летные свойства вертолета. От 1-го до 3-го сечения при­менен профиль NACA-230-12, а от 4-го до 22-го - профиль NACA-230-12M (модифицированный) *. У профиля NACA-230-12M число Мкр = 0,72 при угле атаки нулевой подъемной силы. При увеличении углов атаки a°(рис. 1.2) Мкр уменьшается и при наивыгоднейшем угле атаки, при котором коэффициент подъемной силы С у = 0,6, Мкр = 0,64. В этом случае крити­ческая скорость в стандартной атмосфере над уровнем моря составит:

V KP == а Мкр = 341 0,64 = 218 м/с, где a- скорость звука.

Следовательно, на концах лопастей мож­но создавать скорость менее 218 м/с, при которой не будет появляться скачков уп­лотнения и волнового сопротивления. При оптимальной, частоте вращения несущего винта 192 об/мин окружная скорость кон­цов лопастей составит:

U = wr = 2 prn / 60 = 213,26 м/с, где w - угловая скорость;

r- радиус окруж­ности, описываемый концом лопасти.

Рис. 1.2. Изменение коэффициента подъемной силы С у от углов ата­ки a° и числа М профиля NACA-230-12M

Отсюда видно, что окружная скорость близка к критической, но не превышает ее. Лопасти несущего винта вертолета име­ют отрицательную геометрическую крутку, изменяющуюся по линейному закону от 5° у 4-го сечения до 0° у 22-го. На участке между 1-ми 4-м сечениями крутка отсутст­вует и установочный угол сечений лопасти на этом участке равен 5°. Крутка лопасти на такую большую величину существенно улучшила ее аэродинамические свойства и летные характеристики вертолета, в связи с чем более равномерно распределяется подъемная сила по длине лопасти.

* Отсек от 3-го до 4-го сечения является пе­реходным. Профиль лопасти несущего винта - смотри рис. 7.5.

Лопасти винта имеют переменную как абсолютную, так и относительную толщину профиля. Относительная толщина профиля с составляет в комле 13%, на участке от г=_0,23до 7=0,268- 12%, а на участке от г = 0,305 до конца лопасти- 11,38%. Уменьшение толщины лопасти к ее концу улучшает аэродинамические свойства вин­та в целом за счет увеличения критиче­ской скорости и Мкр концевых частей ло­пасти. Уменьшение толщины лопасти к концу приводит к уменьшению лобового сопротивления и снижению потребного кру­тящего момента.

Несущий винт вертолета имеет сравни­тельно большой коэффициент заполнения - 0,0777. Такой коэффициент дает возможность создать большую тягу при умеренном диаметре винта и тем самым удерживать в полете лопасти на небольших установочных углах, при которых углы атаки ближе к наивы­годнейшим на всех режимах полета. Это позволило увеличить к. п. д. винта и отодвинуть срыв потока на большие скорости.

Рис. 1.3. Поляра несущего винта вертолета на режиме висения: 1 - без влияния земли; 2 - с влиянием земли.

Аэродинамическая характеристика несущего винта вертолета представ­лена в виде его поляры (рис. 1.3), которая показывает зависимость коэффи­циента тяги Ср и коэффициента крутящего момента т кр от величины общего шага несущего винта <р. По поляре видно, что чем больше общий шаг несуще­го винта, тем больше коэффициент крутящего момента, а следовательно, больше коэффициент тяги. При наличии «воздушной подушки» тяга несущего винта будет больше, чем без нее при том же шаге винта и коэффициенте кру­тящего момента.

Лопасти рулевого винта прямоугольной формы в плане с профилем NACA-230M не имеют геометрической крутки. Наличие у втулки рулевого винта совмещенного горизонтального шарнира типа «кардан» и компенсатора взмаха позволяет обеспечить более ровное перераспределение подъемной си­лы по ометаемой винтом поверхности в полете.

Фюзеляж вертолета аэродинамически несимметричен. Это видно из кри­вых изменения коэффициентов подъемной силы фюзеляжа С 9ф и лобового сопротивления С в зависимости от углов атаки а ф (рис. 1.4). Коэффици­ент подъемной силы фюзеляжа равен нулю при угле атаки несколько больше 1 , поэтому и подъемная сила будет по­ложительной на углах атаки больше Г, а на углах атаки меньше 1 -отрицательной. Минимальное значение коэффициента лобо­вого сопротивления фюзеляжа С будет при угле атаки, равном нулю. Ввиду того что на углах атаки больше или меньше нуля ко­эффициент С ф увеличивается, выгодно со­вершать полет на углах атаки фюзеляжа, близких к нулю. С этой целью предусмот­рен угол наклона вала несущего винта впе­ред, составляющий 4,5°.

Фюзеляж без стабилизатора статически неустойчив, так как увеличение углов ата­ки фюзеляжа приводит к увеличению коэффициента продольного момента, а следовательно, и продольного момента, действующего на кабрирование и стремящегося к дальнейшему увеличению угла атаки фюзеляжа. Наличие стабилизатора на хвостовой балке фюзеля­жа обеспечивает продольную устойчивость последнему лишь на малых установочных углах от +5 до -5° и в диапазоне небольших углов атаки фюзеляжа от -15 до + 10°. На больших углах установки стабилизатора и больших углах атаки фюзеляжа, что соответствует полету на режиме авто­ротации, фюзеляж статически неустойчив. Это объясняется срывом потока со стабилизатора. В связи с наличием у вертолета хорошей управляемости и достаточных запасов управления на всех режимах полета на нем при­менен стабилизатор, не управляемый в полете с установочным углом - 6°.

Рис. 1.4. Зависимость коэффици­ента подъемной силы Суф и лобо­вогосопротивления Схф фюзеляжа от углов атаки a° фюзеляжа

В поперечном направлении фюзеляж устойчив лишь на больших отрица­тельных углах атаки -20° в диапазоне углов скольжения от -2 до + 6°. Это вызвано тем, что увеличение углов скольжения приводит к увеличению коэффициента момента крена, а следовательно, и поперечного момента, стре­мящегося и дальше увеличить угол скольжения.

В путевом отношении фюзеляж неустойчив практически на всех углах атаки при малых углах скольжения от -10 до +10°, на углах, больше указанных, характеристики устойчивости улучшаются. При углах сколь­жения 10° < b < - 10° фюзеляж нейтрален, а при скольжении больше 20° он приобретает путевую устойчивость.

Если рассматривать вертолет в целом, то хотя он и обладает достаточной динамической устойчивостью, но не вызывает больших затруднений при пилотировании даже без автопилота. Вертолет Ми-8 в общем оценен с удов­летворительными характеристиками устойчивости, а с включенными систе­мами автоматической стабилизации эти характеристики значительно улуч­шились, вертолету придана динамическая устойчивость по всем осям и по­этому пилотирование существенно облегчается.

4. КОМПОНОВКА ВЕРТОЛЕТА

Вертолет Ми-8 (рис. 1.5) состоит из следующих основных частей и систем: фюзеляжа, взлетно-посадочных устройств, силовой установки, трансмиссии, несущего и рулевого винтов, управления вертолетом, гидравлической систе­мы, авиационного и радиоэлектронного оборудования, системы отопления и вентиляции кабин, системы кондиционирования воздуха, воздушной и противообледенительной систем, устройства для внешней подвески грузов, такелажно-швартовочного и бытового оборудования. Фюзеляж вертолета включает носовую 2 и центральную 23 части, хвосто­вую 10 и концевую 12 балки. В носовой части, являющейся кабиной экипа­жа, размещены сиденья пилотов, приборные доски, электропульты, автопи­лот АП-34Б, командные рычаги управления. Остекление кабины экипажа обеспечивает хороший обзор; правый 3 и левый 24 блистеры снабжены меха­низмами аварийного сброса.

В носовой части фюзеляжа расположены ниши для установки контейне­ров с аккумуляторами, штепсельные разъемы аэродромного питания, труб­ки приемников воздушного давления, две рулежно-посадочные фары и люк с крышкой 4 для выхода к силовой установке. Носовая часть фюзеляжа от­делена от центральной части стыковочным шпангоутом № 5Н, в стенке которого имеется дверной проем. В проеме двери установлено откидное сиденье борт­механика. Спереди, на стенке шпангоута № 5Н, расположены этажерки ра­дио- и электрооборудования, сзади - контейнеры двух аккумуляторных батарей, коробка и пульт управления электролебедкой.

В центральной части фюзеляжа расположена грузовая кабина, для входа в которую слева имеется сдвижная дверь 22, снабженная механизмом ава­рийного сброса. У верхнего переднего угла проема сдвижной двери снару­жи крепится бортовая стрела. В грузовой кабине вдоль правого и левого бортов установлены откидные сиденья. На полу грузовой кабины располо­жены швартовочные узлы и электролебедка. Над грузовой кабиной разме­щены двигатели, вентилятор, главный редуктор с автоматом перекоса и не­сущим винтом, гидропанель и расходный топливный бак.

К узлам фюзеляжа снаружи крепятся амортизаторы и подкосы главных 6, 20 и передней / стоек шасси, подвесные топливные баки 7, 21. Впереди правого подвесного топливного бака расположен керосиновый обогреватель.

Грузовая кабина заканчивается задним отсеком с грузовыми створками. В верхней части заднего отсека расположен радиоотсек, в котором установ­лены панели под приборы радио- и электрооборудования. Для входа из гру­зовой кабины в радиоотсек и хвостовую балку имеется люк. Грузовые створ­ки закрывают проем в грузовой кабине, предназначенный для закатки и вы­катки колесной техники, погрузки и выгрузки крупногабаритных грузов.

В пассажирском варианте к специальным профилям, расположенным по полу центральной части фюзеляжа, крепятся 28 пассажирских кресел. По правому борту в задней части кабины расположен гардероб. Правая борто­вая панель имеет шесть прямоугольных окон, левая - пять. Задние борто­вые окна встроены в крышки аварийных люков. Грузовые створки в пасса­жирском варианте укороченные, на внутренней стороне левой створки рас­положено багажное отделение, а в правой створке размещены короба под контейнеры с аккумуляторами. В грузовых створках сделан проем под зад­нюю входную дверь, состоящую из створки и трапа.


Рис. 1.5 Компоновочная схема вертолета.

1-передняя нога шасси; 2-носовая часть фюзеляжа; 3, 24-сдвижные блистеры; 4-крышка люка выхода к двигателям; 5, 21-главные ноги шасси; 6-капот обогревателя КО-50; 7, 12-подвесные топливные баки; 8-капоты; 9-редук-торная рама; 10-центральная часть фюзеляжа; 11-крышка люка в правой грузовой створке; 12, 19-грузовые створки; 13-хвостовая балка; 14-стабилизатор; 15-концевая балка; 16-обтекатель; 17-хвостовая опора; 18-трапы; 20-щиток створки; 23-сдвижная дверь; 25-аварийный люк-окно.

К центральной части фюзеляжа пристыкована хвостовая балка, к узлам которой крепится хвостовая опора и неуправляемый стабилизатор. Внутри хвостовой балки в верхней ее части проходит хвостовой вал трансмиссии. К хвостовой балке пристыкована концевая балка, внутри которой установ­лен промежуточный редуктор и проходит концевая часть хвостового вала трансмиссии. Сверху к концевой балке крепится хвостовой редуктор, на ва­лу которого установлен рулевой винт.

Вертолет имеет неубирающееся шасси трехопорной схемы. Каждая стой­ка шасси снабжена жидкостно-газовыми амортизаторами. Колеса передней стойки самоориентирующиеся, колеса главных стоек снабжены колодочными тормозами, для управления которыми вертолет оборудован воздушной сис­темой.

Силовая установка включает два двигателя ТВ2-117А и системы, обеспечивающие их работу.

Для передачи мощности от двигателей к несущему и рулевому винтам, а также для привода ряда агрегатов используется трансмиссия, состоящая из главного, промежуточного и хвостового редукторов, хвостового вала, вала привода вентилятора и тормоза несущего винта. Каждый двигатель и главный редуктор имеют свою автономную маслосистему, выполненную по прямой одноконтурной замкнутой схеме с принудительной циркуляцией мас­ла. Для охлаждения маслорадиаторов двигателей и главного редуктора, стартер-генераторов, генераторов переменного тока, воздушного компрес­сора и гидронасосов на вертолете предусмотрена система охлаждения, со­стоящая из высоконапорного вентилятора и воздухопроводов.

Двигатели, главный редуктор, вентилятор и панель с гидроагрегатами закрыты капотом. При открытых крышках капота обеспечивается свобод­ный доступ к агрегатам силовой установки, трансмиссии и гидросистемы, при этом открытые крышки капота двигателей и главною редуктора являются рабочими площадками для выполнения технического обслуживания систем вертолета.

Вертолет оборудован средствами пассивной и активной защиты от пожара. Продольная и поперечная противопожарные перегородки делят под­капотное пространство на три отсека: левого двигателя, правого двигателя, главного редуктора. Активная противопожарная система обеспечивает пода­чу огнегасящего состава из четырех баллонов в горящий отсек.

Несущий винт вертолета состоит из втулки и пяти лопастей. Втулка имеет горизонтальные, вертикальные и осевые шарниры и снабжена гидравличес­кими демпферами и центробежными ограничителями свеса лопастей. Лопасти цельнометаллической конструкции имеют визуальную систему сигнали­зации повреждения лонжерона и электротепловое противообледенительное устройство.

Рулевой винт толкающий, изменяемого в полете шага. Он состоит из втулки карданного типа и трех цельнометаллических лопастей, снабженных электротепловым противообледенительным устройством.

Управление вертолетом сдвоенное состоит из продольно-поперечного уп­равления, путевого управления, объединенного управления «Шаг - газ» и управления тормозом несущего винта. Кроме того, имеется раздельное уп­равление мощностью двигателей и их остановом. Изменение общего шага не­сущего винта и продольно-поперечное управление вертолетом осуществляют­ся с помощью автомата перекоса.

Для обеспечения управления вертолетом в систему продольного, попе­речного, путевого управления и управления общим шагом включены по не­обратимой схеме гидроусилители, для питания которых на вертолете предус­мотрена основная и дублирующая гидросистемы.

Установленный на вертолете Ми-8 четырехканальный автопилот АП-34Б обеспечивает стабилизацию вертолета в полете по крену, курсу, тангажу и высоте.

Для поддержания в кабинах нормальных температурных условий и чис­тоты воздуха вертолет оборудован системой отопления и вентиляции, кото­рая обеспечивает подачу подогретого или холодного воздуха в кабины эки­пажа и пассажиров. При эксплуатации вертолета в районах с жарким клима­том вместо керосинового обогревателя могут быть установлены два борто­вых фреоновых кондиционера.

Противообледенительная система вертолета защищает от обледенения лопасти несущего и хвостового винтов, два передних стекла кабины экипа­жа и воздухозаборники двигателей.

Противообледенительное устройство лопастей винтов и стекол кабины экипажа - электротеплового, а воздухозаборников двигателей - воздушнотеплового действия.

Установленное на вертолете авиационное и радиоэлектронное оборудова­ние обеспечивает выполнение полетов днем и ночью в простых и сложных ме­теорологических условиях.

Первый проект летательного аппарата, похожего на современный вертолет, создал Леонардо да Винчи еще в 1475 году. Но впервые человеку удалось оторваться от земли на винтокрылой машине лишь 29 сентября 1907 года – братья Луи и Жак Бреге совершили первый в истории вертикальный полет на вертолете, построенном по собственным чертежам.

Но вертолеты братьев Бреге, как и все предыдущие проекты, были рассчитаны только на вертикальный подъем. 18 мая 1911 года русский инженер Борис Юрьев опубликовал в журнале «Автомобиль и воздухоплавание» схему одновинтового вертолета с рулевым винтом и автоматом перекоса лопастей. До настоящего времени этот механизм используется на большинстве вертолетов и позволяет машинам летать по горизонтальной оси.

Скорость является немаловажной технической характеристикой вертолета. Для улучшения скоростных характеристик разработчики применяют различные несущие системы с разным количеством винтов и лопастей, а некоторые модели оснащены специальными толкающими винтами. За столетнюю историю вертолетов авиаконструкторам удалось «разогнать» их почти до 500 км/ч. На этой неделе редакция шведского интернет-портала expressen.se составила рейтинг современных вертолетов, назвав Топ-10 самых быстрых винтокрылых машин.

1-е место
Вертолет Eurocopter X3. Максимальная скорость – 472 км/ч
militaryfactory.com


Экспериментальный гибридный вертолет (винтокрыл), созданный компанией Eurocopter. Первый полет состоялся в 2010 году во Франции
militaryfactory.com


2-е место
AH-64D Apache. Максимальная скорость – 365 км/ч
thebrigade.com


С середины 80-х годов Apache является основным ударным вертолетом армии США. Впервые участвовал в боевых действиях во время вторжения американцев в Панаму в 1989 году
airplane-pictures.net


3-е место
Ка-52 «Аллигатор». Максимальная скорость – 350 км/ч
airwar.ru


Многоцелевой ударный вертолет является модернизированной версией Ка-50 «Черная акула». Первый полет он совершил в 1997 году, серийно производится с 2008 года. Единственный в мире боевой вертолет, в кабине которого пилоты сидят рядом, а не друг за другом
airwar.ru


4-е место
NH90. Максимальная скорость – 324 км/ч
defenseindustrydaily.com


NH90 – многоцелевой вертолет, разработанный компанией Eurocopter. Совершил первый полет в 1995 году
defenseindustrydaily.com


5-е место
Boeing CH-47 Chinook. Максимальная скорость – 315 км/ч
boeing.com


Американский тяжелый военно-транспортный вертолет продольной схемы. Эксплуатируется с начала 60-х годов
boeing.com


6-е место
Ми-35М. Максимальная скорость – 310 км/ч
bmpd.livejournal.com


Является усовершенствованной модификацией вертолета Ми-24. Серийно производится с 2005 года
bmpd.livejournal.com


7-е место
AgustaWestland AW101 Merlin (до 2007 года носил название EH101). Максимальная скорость – 309 км/ч
aircraftcompare.com


Вертолет средней грузоподъемности, используется для военных и гражданских целей. Впервые поднялся в воздух в 1987 году
aircraftcompare.com


8-е место
AgustaWestland AW139. Максимальная скорость – 306 км/ч
аvia.pro


Англо-итальянский двухмоторный многоцелевой вертолет. Армейская модификация вмещает до 10 военнослужащих в полном снаряжении. Первый полет состоялся в 2001 году
аvia.pro


9-е место
Ми-28Н «Ночной охотник». Максимальная скорость – 300 км/ч
bmpd.livejournal.com

Легкий многоцелевой вертолет AW109 с его максимально допустимой скоростью 311 км/час и крейсерской 285 км/час — одна из самых популярных машин среди себе подобных. «Стодевятый» производства англо-итальянского концерна AugustaWestland закуплен армиями многих стран, включая ЮАР, Швецию, Новую Зеландию и Малайзию.


Состоящий на вооружении США AH-64D Apache считается одним из лучших многоцелевых боевых вертолетов. В экстренной обстановке он разгоняется до 365 км/час. А крейсерская скорость составляет 265−270 км/час.


Российский МИ-26 (по классификации НАТО — Halo) — не только крупнейший вертолет в мире, но еще и самый быстрый среди тяжелой транспортной братии. Его максимальная скорость — 295 км/час, крейсерская — 265 км/час. Вертолет оборудован двумя газотурбинными двигателями мощностью 11,400 лошадиных сил каждый, способен преодолеть расстояние 800 км и подняться на высоту 4600 метров.


Российский ударный вертолет МИ-28Н или «Ночной охотник» не только «видит» врага с расстояния 35 км даже в темноте, но и несется к нему с максимальной скоростью 300 км/час. В крейсерской скорости он соперничает с американским AH-64D Apache: 265−270 км/час.


Еще один ударный вертолет родом из России, Ка-52 или «Аллигатор», может подниматься на высоту более 5000 м и развивать максимальную скорость 300 км/час. «Аллигатор» способен взлетать и приземляться в условиях экстремально низких и экстремально высоких температур.


Многоцелевой военный вертолет NH90 разработан франко-германским консорциумом Eurocopter и состоит на службе у многих стран, входящих в состав НАТО. Мощный двигатель позволяет аппарату подняться на максимальную высоту 3200 метров со скороподъемностью более 11 м/с. Его максимальная скорость — 291 км/час.


Представитель нового поколения вертолетов с двумя газотурбинными двигателями AugustaWestland AW139M набирает максимальную скорость 310 км/час. При этом крейсерская ненамного меньше — 306 км/час.


AW101 Merlin — вертолет средней грузоподъемности, который в экстремальных условиях может взять планку в 309 км/час (крейсерская скорость — 278 км/час). Англо-итальянский концерн AugustaWestland производит его как для военных, так и для гражданских целей. Машина принимает на борт более 30 человек и осуществляет поисково-спасательные работы на расстоянии более 800 км.


Российскому многоцелевому ударному вертолету Mи-35M по плечу скорость 320 км/час. Он может нести боевую службу в различных погодных условиях, круглые сутки.


Американский тяжелый вертолет CHF-47 Chinook предназначен для транспортировки войск, артиллерии, оборудования и различных грузов. Несмотря на громоздкий вид, это достаточно шустрый аппарат с максимальной скоростью 282 км/час.

Неофициальный рекорд скорости при спуске (487 км/час) и при горизонтальном полете (472 км/час) принадлежит винтокрылому детищу компании Eurocopter c кратким именем X3. Но речь пока идет только о демонстрационных моделях. Когда эти «спринтеры» попадут в серийное производство (и попадут ли вообще), точно не известно. Тем временем боевую службу несут проверенные «лошадки» — несколько более медленные, зато надежные.

Км 1ч


Рис. 68. Максимальные углы атаки конца лопасти винта вертолета Ми-8 в горизонтальном полете в зависимости от веса и высоты полета:

а-для вертолета весом 11 100 кг; б-для вертолета весом 12 000 кг


жении у конца лопасти,в азимуте 270° угла атаки 14° (ниже кри­тического- 15°, рис. 68). Как известно, !в азимуте 270° у конца лопасти максимальный угол атаки на любой скорости полета. С увеличением скорости угол атаки увеличивается за счет увели­чения скорости (взмаха. С увеличением высоты лолета при той же скорости угол атаки будет больше за счет большего потребного шага несущего винта. При достижении угла атаки, равного 14°, скорость полета будет критическая по срыву. Эта скорость умень­шается с увеличением высоты. У вертолета Ми-8 максимальные скорости по срыву в зависимости от высоты и веса вертолета получены следующие (см. табл. 14 и рис. 67, а и 68).

Таблица 14 Максимальные скорости по срыву потока вертолета Ми-8

Как "видно из рис. 67 и табл. 13 и 14, критические скорости по срыву больше, чем максимальные скорости по мощности на взлетном режиме работы двигателей, как для вертолетов с нор­мальным, так и с максимальным полетным весом.

Максимальные скорости, установленные для эксплуатации

Эти скорости обычно меньше, чем критические по срыву и по мощности на взлетном режиме работы двигателей. Они близки к максимальным скоростям по мощности на номинальном режи­ме работы двигателей. Ограничение указанных скоростей мо­жет быть также по повышенным вибрациям, срыву (потока, по прочности несущего винта и других частей вертолета.

Для вертолета Ми-8 в зависимости от высоты полета и веса установлены следующие максимальные скорости горизонталь­ного полета для эксплуатации (см. табл. 15 и рис. 67,6).

Указанные максимальные скорости, установленные для эк­сплуатации вертолета весом 11100 кг до высоты 2000 м и для вертолета весом 12000 кг до высоты 1000 м, ограничены по ус­ловиям вибрации вертолета. На скоростях, выше установленных, вибрация у вертолета Ми-8 больше, чем у вертолета Ми-4. На высотах больше 2000 м для вертолета весом 11100 кг и больше 1000 м для вертолета весом 12000 кг максимальные скорости ограничены по срыву потока с запасом не менее 20 км/ч по при­бору по расчетной границе срыва.


Таблица 15

Максимальные скорости горизонтального полета вертолета Ми-8, установленные для эксплуатации

Максимально допустимая скорость при транспортировке гру­зов на внешней подвеске 250 км/ч по прибору и 150 км/ч при грузе весом более 2000 кг и внешней подвеске с тросом 8АТ-9600-1 диаметром 13 мм. Но эти скорости могут быть и мень­ше, в зависимости от поведения груза на подвеске.

Максимально допустимая скорость при полете с полуоткры­тыми задними створками грузовой кабины 160 км/ч по прибору»

§ 4. ОСОБЕННОСТИ ГОРИЗОНТАЛЬНОГО ПОЛЕТА И МЕТОДИКИ ЕГО ВЫПОЛНЕНИЯ НА ВЕРТОЛЕТЕ Ми-8

Для горизонтального полета скорость выбирают исходя из условий и целей полета: полет с минимальным часовым или ки­лометровым расходом топлива, по расписанию, с минимальной затратой времени, грузы размещены внутри кабины или на внеш­ней подвеске.

Методика выполнения переходного режима от набора высо­ты к горизонтальному полету с включенным автопилотом такая же, как и без автопилота. Он облегчает выполнение этого пере­ходного режима.

Перевод вертолета из режима набора высоты в режим гори­зонтального полета осуществляется ручками циклического и об­щего шага винта. Ручкой циклического шага устанавливается необходимая скорость горизонтального полета, а ручкой общего шага подбирается необходимая мощность для этой скорости. Обороты несущего винта при этом сохраняются автоматически в пределах 95±2%, если действия всеми рычагами управления будут плавными. При отклонении рычагов управления, особен­но ручкой общего шага, болеее высоким темпом возможен выход оборотов за указанные пределы. В этом случае допускаются обороты несущего винта в пределах 89-103%.


Балансировка вертолета на режиме горизонтального полета, как и на других режимах, производится при помощи электро-" магнитных муфт ЭМТ-2. Снимать усилия со всех рычагов уп­равления необходимо короткими и частыми нажатиями на кноп­ку снятия усилий (триммера) после небольших отклонений рычагов управления или после выполнения всего переходного ре­жима одним нажатием на кнопку снятия усилий. Перед нажа­тием на кнопку не следует прилагать больших усилий на рыча­ги управления, так как при этом мгновенно исчезают усилия и происходит резкое изменение положения рычагов управления, что приводит к большой разбалансировке вертолета. Выполнять переходные режимы с нажатой кнопкой не рекомендуется, так как здесь возможны лишние движения рычагами управления, что может повести к чрезмерной раскачке вертолета.

Правильность подбора необходимой мощности определяется по вариометру и высотомеру: если стрелка вариометра находит­ся около нулевого положения, а высота не меняется, то режим работы двигателей для данной скорости на данной высоте подоб­ран правильно. При этом установятся определенные обороты турбокомпрессоров, так как режим работы определяется только оборотами турбокомпрессоров. Если обороты будут больше мак­симально допустимых оборотов крейсерского режима, опреде­ленных по графику перед вылетом (см. рис. 30), то двигатели будут работать в области номинального режима. Поэтому необ­ходимо следить за временем работы двигателей: оно не должно превышать одного часа или 1/3 расчетной продолжительности полета. Обычно до истечения указанного времени за счет выго­рания топлива и уменьшения полетного веса необходимый ре­жим работы двигателей снижается до крейсерского. Если этого не произойдет за указанный срок, то необходимо снизить режим работы двигателей до значения максимально допустимых обо­ротов турбокомпрессора и уменьшить скорость полета до ско­рости, соответствующей крейсерскому режиму работы двигате­лей.

В принципе же, независимо от режима полета, разрешается работа двигателей на любом режиме. При работе на крейсер­ском режиме время не ограничивается. При работе на номина­ле-время работы 60 мин, на взлетном - 6 мин. Если двига­тели работали непрерывно на номинальном или взлетном режимах указанное время, то необходимо их перевести на пониженный режим на время не менее 5 мин, после чего опять можно работать на указанных режимах. Так же разрешается непре­рывная работа двигателей последовательно на взлетном и номи­нальном режимах с общей продолжительностью не более 66 мин. Положение рычагов управления на всем диапазоне скорос­тей горизонтального полета такое же, как и у вертолета Ми-4: с увеличением скорости ручка циклического шага должна пере­мещаться вперед и влево, левая педаль вперед до определенной


скорости. При дальнейшем разгоне скорости необходимо (пере­мещать вперед правую педаль На всем диапазоне скоростей под­держивается необходимая мощность при помощи ручки общего шага при правом положении рукоятки корректора газа.

Установившийся режим горизонтального полета осуществля­ется со всеми включенными каналами автопилота АП-34Б. Канал высоты включается на установившемся режиме горизон­тального полета на высоте не ниже 50 м. Изменение высоты по­лета (производится при выключенном канале высоты автопилота. После вывода вертолета на другую высоту необходимо вклю­чить канал высоты кнопкой «ВКЛ» на пульте управления авто­пилота.

В установившемся горизонтальном полете с освобожденным управлением вертолет сохраняет режим полета, медленно уходя с заданной скорости, так как автопилот стабилизирует не ско­рость полета, а угол тангажа. Такая неустойчивость вертолета по скорости более выражена на малых скоростях до 150 км/ч. На скоростях более 150 км/ч изменение скорости значительно меньше. Кроме того, указанная неустойчивость по скорости за­висит от точности балансировки вертолета на режиме перед включением каналов автопилота: чем точнее сбалансирован вертолет, тем лучше устойчивость. При спокойной атмосфере ав­топилот удерживает вертолет с точностью по направлению ±1°, по тангажу ±0,5°, по крену +0,5°, по высоте ±6 м до высоты 1000 м и ±12 м на высоте более 1000 м.

Пилот может вмешаться в управление и подправлять ба­лансировку вертолета не только рычагами управления, но и руч­ками центровки (рукоятками коррекции) по направлению, тан­гажу и крену в пределах ±5°. Для этого на пульте управления автопилотом имеются ручки центровки, каждое деление которых соответствует повороту вертолета вокруг соответствующей оси на 1°. Канал высоты такой ручки не имеет, и подправлять вы­соту можно только рычагом общего шага.

Нормальная работа каналов автопилота определяется коле­баниями стрелок индикаторов около нейтрального положения и характерным подергиванием вертолета, возникающим при пари­ровании возмущений. Работу канала высоты также можно кон­тролировать по изменению общего шага несущего винта, что видно по УШВ. При выключении соответствующего канала стрелка прекращает колебания, устанавливаясь в нейтральное положение.

При полете с включенным автопилотом, ввиду изменения ве­са (вертолета, метеоусловий и т. д., на вертолет будут действовать постоянные моменты. При этом каналы автопилота будут стаби­лизировать вертолет по всем направлениям, расходуя ход што­ка соответствующего гидроусилителя, стрелки индикаторов бу­дут приближаться к упорам. В этом случае необходимо ручками центровки установить стрелки в нейтральное положение. Необ-


ходимо ручкой циклического шага удерживать вертолет от неиз­бежных изменений углов крена и тангажа, выключить автопилот или данный канал, сбалансировать вертолет и вновь включить автопилот или данный канал его. Стрелки индикаторов каналов крена и тангажа («К» и «Т») можно устанавливать в нейтраль­ное.положение перед выключением автопилота, кроме ручек центровки, также и ручкой циклического шага. Такой перевод стрелок индикаторов в рабочее положение происходит без рыв­ков |в управлении вертолетом. Стрелку индикатора канала вы­соты в нейтральное положение надо перемещать ручкой общего шага: если стрелка ушла вверх, необходимо ручку общего шага опустить; при уходе стрелки вниз - поднять. Затем опять (вклю­чить канал высоты кнопкой включения на пульте автопилота. В установившемся горизонтальном полете и включенном ка­нале высоты автопилота и автоматической системы поддержания оборотов несущего винта (правая коррекция) высота полета поддерживается за счет постепенного автоматического уменьше­ния общего шага винта каналом высоты автопилота ввиду уменьшения веса вертолета за счет выгорания топлива. Ручка общего шага будет неподвижна, а указатель общего шага будет показывать уменьшение шага. Уменьшение шага винта приво­дит к попытке увеличения его оборотов, но регулятор оборотов несущего винта РО-40ВР уменьшает подачу топлива в двигате­ли, поэтому обороты несущего винта поддерживаются постоян­ными в пределах 95±2%, а обороты компрессоров будут умень­шаться. Стрелка индикатора нулевого канала высоты будет пере­мещаться от нейтрального положения вниз.

Если при горизонтальном полете канал высоты автопилота не включен, а работает только автоматическая система поддер­жания оборотов несущего винта, то по истечении времени за счет уменьшения веса вертолета, он будет стремиться (переходить к режиму набора высоты, увеличивая высоту полета, так как мощ­ность двигателей и обороты несущего винта постоянны. В этом случае пилоту необходимо периодически уменьшать мощность двигателей, опуская ручку общего шага.

Если при включении всех каналов автопилота и при правой коррекции изменить скорость горизонтального полета от эконо­мической в сторону увеличения или уменьшения только плавным и медленным движением ручки циклического шага, то высота полета и обороты несущего винта по указателю ИТЭ-1 сохраня­ются, скорость соответственно увеличивается или уменьшается. Общий шаг несущего винта то УШВ и обороты турбокомпрессо­ров по указателю ИТЭ-2 будут увеличиваться согласно общим законам аэродинамики и работе автоматической системы стаби­лизации вертолета Ми-8 по высоте.

В зонах большой турбулентности атмосферы полет должен совершаться с выключенными каналами направления и высоты при скорости 150-175 км/ч по прибору.


Горизонтальный полет по кругу с учебной целью рекоменду­ется совершать на скорости 160 км/ч.

Выполнение полетов на больших высотах, особенно близких к потолку, более сложно по сравнению с выполнением их на меньших высотах и требуют от пилота повышенного внимания и более плавной работы общим шагом несущего винта и други­ми рычагами управления.

Виражи и развороты в горизонтальном полете. Виражи и раз­вороты на вертолете Ми-8 выполняются так же, как и на верто­лете Ми-4. Если полетный вес у вертолета нормальный и ниже нормального, то виражи и развороты необходимо выполнять в диапазоне допустимых скоростей с креном до 30°. При весе бо­лее нормального, с включенным автопилотом и при полете по приборам - с креном до 15°. С учебной целью виражи рекомен­дуется совершать на скорости 160 км/ч,по прибору.

Вертолет вводится в вираж или разворот координированным движением ручки циклического шага и педали в сторону нужного разворота или виража с одновременным увеличением мощности ручкой общего шага. Так как для выполнения левого виража или разворота требуется меньшая мощность, чем для правого, то при крене до 15° на левом вираже и развороте не требуется уве­личивать мощность.

Вывод вертолета из виража или разворота необходимо начи­нать за 10-15° до намеченного ориентира или заданного направ­ления по указателю УГР-4К курсовой системы. Вывод выполня­ется координированным движением рычагов управления.

При вводе в!вираж, его выполнении и при выводе (вертолета из виража необходимо действовать всеми рычагами управления плавно и координирование, тогда вертолет не так подвергается разбалансировке, и облегчается техника пилотирования.

Радиус и время одного круга виража определяются по тем же формулам, что и для самолета. Для примера их величина в зависимости от скорости и угла крена приведена в табл. 16.

Таблица 16

Радиус и время одного круга виража в зависимости от скорости и угла

Скорость, Крен, Радиус, Время, Скорость, Крен, Радиус, Время,
км/ч град м с км/ч град м с

Полеты на малой высоте. Такие полеты выполняются при не­возможности производить руление (по состоянию грунта), при проведении специальных работ, а также с учебной целью.


Обычно полеты на малой высоте при ровном рельефе мест­ности рекомендуется выполнять на высоте до 10 м на скоростях до 80 км/ч с использованием воздушной подушки. Полеты на вы­сотах от 10 до 40 м выполнять на скоростях от 60 до 150 км/ч. При таких полетах скорость определяется по земле, указателю скорости и по указателю ДИВ-1, если он установлен, Над сильно пересеченной местностью полеты необходимо производить на высотах не менее 20 м над рельефом и на скоростях по прибо­ру не менее 60 км/ч для того, чтобы полет происходил вне зоны влияния воздушной подушки, и чтобы можно было обеспечить хорошую управляемость вертолета при действии нисходящих по­токов, обусловленных рельефом местности. При малых скорос­тях полета вертолет Ми-8 имеет повышенную вибрацию, поэто­му длительные полеты в диапазоне скоростей от 20 до 50 км/ч не рекомендуются.

При "подлетах на малой высоте необходимо учитывать ско­рость и направление ветра. При ветре до 5 м/с полеты можно совершать при любом направлении ветра с разворотом на 360° При ветре от 5 до 10 м/с можно совершать полеты против ветра и с боковым ветром до 90°. При ветре от 10 до 20 м/с полеты можно совершать только против ветра.

Подлеты на неукатанных заснеженных площадках произво­дить в случаях крайней необходимости на скоростях 20-40 км/ч, обеспечивающих горизонтальную видимость, имея ориентир «при­вязки» в точке зависания. Высота аюдлета в таких случаях долж­на быть 15 м.

Подлеты и перемещения на высотах ниже 10 м рекоменду­ется производить на скоростях до 20 км/ч, не выходя на режим тряски.

Подлеты на старт выполняются обычно на высоте до 10 м, а при порывистом ветре на высоте не менее 5 м. При этом ско­рость должна быть не более 15 км/ч, если расстояние до препят­ствий не более 50-75 м, и можно держать скорость до 70 км/ч, если расстояние до препятствий более 70 м. Подлеты выполнять на расстоянии не менее 50 м от стоянок самолетов и вертолетов. Подлеты над самолетами и вертолетами запрещаются.

Горизонтальный полет с грузами на внешней подвеске. В та­ком полете вертолет имеет большее вредное сопротивление, что приводит к необходимости увеличивать мощность для полета. При этом километровый и часовой расходы топлива увеличива­ются, дальность полета и грузоподъемность уменьшаются. Для вертолета Ми-8 установлен максимальный вес с грузами на внешней подвеске 11000 кг, максимальный груз на подвеске 2500 кг. Скорость полета также ограничена. Кроме того, вели­чина скорости устанавливается в зависимости от веса груза, его габаритов и поведения в полете. При транспортировке компакт­ных грузов скорость можно держать максимально допустимую, так как поведение вертолета при этом нормальное. При транс-



портировке крупногабаритных и парусных грузов максимально допустимая скорость уменьшается из-за значительной раскачки груза на внешней подвеске. Так, например, в одном из испыта­тельных полетов при транспортировке центроплана самолета (парусный груз) максимально возможная скорость получена 120 км/ч, а при транспортировке труб для буровой установки - 140 км/ч (см. табл. 12).

По технике пилотирования полеты с грузами на внешней спод-веске сложнее и имеют ряд особенностей. Раскачивание груза на подвеске приводит к раскачиванию вертолета, как в продоль­ном, так и (в поперечном направлениях. Поэтому балансировать вертолет в установившемся режиме полета труднее. Для предот­вращения раскачки грузов необходимо подобрать соответствую­щую скорость. Балансировать вертолет необходимо более вни­мательно и с большей тщательностью, движения рычагами управления должны быть плавными и соразмерными. Необходи­мость такой техники пилотирования объясняется не только поведением груза, но и изменением эффективности управления вертолетом за счет смещения центра тяжести всего вертолета вниз. Известно, что чем ниже центр тяжести вертолета от втулки несущего винта, к которой приложена аэродинами­ческая сила, тем больше эффективность управления. Поэтому потребные отклонения автомата перекоса и ручки циклического шага, как в продольном, так и в поперечном направлениях, бу­дут меньше. При излишних отклонениях могут создаваться та­кие углы тангажа и крена, что вывод из них будет затруднен или даже невозможен.

Выполнение разворотов с грузами на внешней подвеске так­же затруднено, поэтому их необходимо выполнять, строго сох­раняя координацию всеми рычагами управления. Максимальный допустимый угол крена не должен превышать 15°.

Горизонтальный полет осуществляется с включенными каналами автопилота АП-34Б.

При полете с грузами на внешней подвеске в условиях по­вышенной турбулентности воздуха у вертолета меняется ско­рость, появляется продольная и поперечная раскачка. В этом случае необходимо плавным движением рычагов управления удерживать заданную скорость полета. При этом уменьшается раскачка в продольном и в поперечном направлениях.

Горизонтальный полет с одним работающим двигателем. Та­кой полет может совершаться с учебной целью или при отказе одного из двигателей. Горизонтальный полет возможен с одним работающим двигателем на взлетном режиме лишь при нор­мальном полетном весе вертолета на скоростях 120-130 км/ч по прибору на высотах до 1000 м. На других скоростях и высотах, а также при весе более нормального, вертолет совершает полет со снижением.

Беспрерывный полет при одном работающем двигателе на


режиме выше номинального возможен не более 6 мин, поэтому такой полет рекомендуется для поиска площадки и посадки. Кроме того, общая продолжительность полета на одном двигате­ле не должна превышать 10% всего ресурса главного редуктора.

В учебных целях полет с одним работающим двигателем раз­решается на высотах до 3000 м с весом не более 10100 кг. В этом случае горизонтальный полет будет совершаться на номиналь­ном режиме работающего двигателя. При нормальном весе 11100 кг и на экономической скорости горизонтальный полет возможен на режиме работающего двигателя между номиналь­ным и взлетным.

Развороты при полете с одним работающим двигателем необ­ходимо выполнять с креном не более 15°.